skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Rich, R Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a view of the stellar halo in the inner-central regions of the Milky Way (R≲ 10 kpc) mapped by RR Lyrae stars. The combined BRAVA-RR/APOGEE RR Lyrae catalog is used to obtain a sample of 281 RR Lyrae stars located in the bulge region of the Galaxy, but with orbits indicating they belong to the inner-central halo. The RR Lyrae stars in the halo are more metal-poor than the bulge RR Lyrae stars and have pulsation properties more consistent with an accreted population. We use the Milky Way-like zoom-in cosmological simulation Auriga to compare the properties of the RR Lyrae stars to those expected from the “Gaia-Enceladus-Sausage” (GES) merger. The integrals of motions and eccentricities of the RR Lyrae stars are consistent with a small fraction of 6–9% ± 2% of the inner-central halo RR Lyrae population having originated from GES. This fraction, lower than what is seen in the solar neighborhood, is consistent with trends seen in the Auriga simulation, where a GES-like merger would have a decreasing fraction of GES stars at small Galactocentric radii compared to other accreted populations. Very few of the Auriga inner Galaxy GES-18 particles have properties consistent with belonging to a bulge population with (zmax< 1.1 kpc), indicating that no (or very few) RR Lyrae stars with bulge orbits should have originated from GES. 
    more » « less
    Free, publicly-accessible full text available August 19, 2026
  2. Abstract With a luminosity similar to that of Milky Way dwarf spheroidal systems like Sextans, but a spatial extent similar to that of ultra-diffuse galaxies, Andromeda (And) XIX is an unusual satellite of M31. To investigate the origin of this galaxy, we measure chemical abundances for And XIX derived from medium-resolution (R∼ 6000) spectra from the Deep Extragalactic Imaging Multi-Object Spectrograph on the Keck II telescope. We coadd 79 red giant branch stars, grouped by photometric metallicity, in order to obtain a sufficiently high signal-to-noise ratio to measure 20 [Fe/H] and [α/Fe] abundances via spectral synthesis. The latter are the first such measurements for And XIX. The mean metallicity we derive for And XIX places it ∼2σhigher than the present-day stellar mass–metallicity relation for Local Group dwarf galaxies, potentially indicating it has experienced tidal stripping. A loss of gas and associated quenching during such a process, which prevents the extended star formation necessary to produce shallow [α/Fe]–[Fe/H] gradients in massive systems, is also consistent with the steeply decreasing [α/Fe]–[Fe/H] trend we observe. In combination with the diffuse structure and disturbed kinematic properties of And XIX, this suggests tidal interactions, rather than galaxy mergers, are strong contenders for its formation. 
    more » « less
  3. Abstract Tidal disruption events (TDEs) that are spatially offset from the nuclei of their host galaxies offer a new probe of massive black hole (MBH) wanderers, binaries, triples, and recoiling MBHs. Here we present AT2024tvd, the first off-nuclear TDE identified through optical sky surveys. High-resolution imaging with the Hubble Space Telescope shows that AT2024tvd is 0 . 914 ± 0 . 010 offset from the apparent center of its host galaxy, corresponding to a projected distance of 0.808 ± 0.009 kpc atz= 0.045. Chandra and Very Large Array observations support the same conclusion for the TDE’s X-ray and radio emission. AT2024tvd exhibits typical properties of nuclear TDEs, including a persistent hot UV/optical component that peaks atLbb ∼ 6 × 1043erg s−1, broad hydrogen lines in its optical spectra, and delayed brightening of luminous (LX,peak ∼ 3 × 1043erg s−1), highly variable soft X-ray emission. The MBH mass of AT2024tvd is 106±1M, at least 10 times lower than its host galaxy’s central black hole mass (≳108M). The MBH in AT2024tvd has two possible origins: a wandering MBH from the lower-mass galaxy in a minor merger during the dynamical friction phase or a recoiling MBH ejected by triple interactions. Combining AT2024tvd with two previously known off-nuclear TDEs discovered in X-rays (3XMM J2150 and EP240222a), which likely involve intermediate-mass black holes in satellite galaxies, we find that the parent galaxies of all three events are very massive (∼1010.9M). This result aligns with expectations from cosmological simulations that the number of offset MBHs scales linearly with the host halo mass. 
    more » « less
    Free, publicly-accessible full text available May 30, 2026
  4. Context.The inner Galaxy is a complex environment, and the relative contributions of different formation scenarios to its observed morphology and stellar properties are still debated. The different components are expected to have different spatial, kinematic, and metallicity distributions, and a combination of photometric, spectroscopic, and astrometric large-scale surveys is needed to study the formation and evolution of the Galactic bulge. Aims.The Blanco DECam Bulge Survey (BDBS) provides near-ultraviolet to near-infrared photometry for approximately 250 million unique stars over more than 200 square degrees of the southern Galactic bulge. By combining BDBS photometry with the latestGaiaastrometry, we aim to characterize the chemodynamics of red clump stars across the BDBS footprint using an unprecedented sample size and sky coverage. Methods.Our field of view of interest is |ℓ| ≤ 10°, −10° ≤b ≤ −3°. We constructed a sample of approximately 2.3 million red clump giants in the bulge with photometric metallicities, BDBS photometric distances, and proper motions. Photometric metallicities are derived from a (u − i)0versus [Fe/H] relation; astrometry, including precise proper motions, is from the third data release (DR3) of the ESA satelliteGaia. We studied the kinematics of the red clump stars as a function of sky position and metallicity by investigating proper-motion rotation curves, velocity dispersions, and proper-motion correlations across the southern Galactic bulge. Results.By binning our sample into eight metallicity bins in the range of −1.5 dex < [Fe/H] < +1 dex, we find that metal-poor red clump stars exhibit lower rotation amplitudes, at ∼29 km s−1kpc−1. The peak of the angular velocity is ∼39 km s−1kpc−1for [Fe/H] ∼ −0.2 dex, exhibiting declining rotation at higher [Fe/H]. The velocity dispersion is higher for metal-poor stars, while metal-rich stars show a steeper gradient with Galactic latitude, with a maximum dispersion at low latitudes along the bulge minor axis. Only metal-rich stars ([Fe/H] ≳ −0.5 dex) show clear signatures of the bar in their kinematics, while the metal-poor population exhibits isotropic motions with an axisymmetric pattern around Galactic longitudeℓ = 0. Conclusions.This work describes the largest sample of bulge stars with distance, metallicity, and astrometry reported to date, and shows clear kinematic differences with metallicity. The global kinematics over the bulge agrees with earlier studies. However, we see striking changes with increasing metallicity, and, for the first time, kinematic differences for stars with [Fe/H]>  − 0.5, suggesting that the bar itself may have kinematics that depends on metallicity. 
    more » « less
  5. Abstract Spectroscopic observations of nine cataclysmic variables that have been postulated to contain magnetic white dwarfs were obtained to further characterize their classifications, orbital parameters, inclinations, and/or accretion properties. Zwicky Transient Facility (ZTF) and Transiting Exoplanet Survey Satellite (TESS) data were also used when available. This information enables these systems to be useful in global population and evolution studies of close binaries. Radial velocity curves were constructed for eight of these systems, at various states of accretion. High-state spectra of ZTF0548+53 reveal strong Heiiemission, large radial velocity amplitudes, as well as cyclotron harmonics yielding a magnetic field strength of 50 MG, confirming this as a polar system. Analysis of TESS data reveals an orbital period of 92.1 minutes. High-state spectra of SDSS0837+38 determine a period of 3.18 hr, removing the ambiguity of periods found during the low state, and showing this is a regular polar and not a pre-polar system. The ZTF light curve of CSS0026+24 shows a total eclipse with a period of 122.9 minutes, and features indicative of two accretion poles. A new, remarkably large spin-to-orbit ratio is found for ZTF1631+69 (0.61), making it, along with 2011+60 (=Romanov V48), likely stream-accreting intermediate polars. ZTF data reveal the presence of ∼2 mag low states in ZTF1631+69, and along with McDonald Observatory 2.1 m and TESS light curves, confirm a grazing eclipse that is deepest at a narrow subset of beat phases. The TESS data on PTF12313+16 also indicate a partial eclipse. Analysis of ZTF data on SDSS1626+33 reveals a period of 3.17 hr and suggests the presence of a partial eclipse. 
    more » « less
  6. We report the first high-resolution, detailed abundances of 21 elements for giants in the Galactic bulge/bar within 1° of the Galactic plane, where high extinction has rendered such studies challenging. Our high-signal-to-noise-ratio and high-resolution, near-infrared spectra of seven M giants in the inner bulge, located at (l,b) = (0°, +1°), are observed using the IGRINS spectrograph. We report the first multichemical study of the inner Galactic bulge by investigating, relative to a robust new solar neighborhood sample, the abundance trends of 21 elements, including the relatively difficult to study heavy elements. The elements studied are: F, Mg, Si, S, Ca, Na, Al, K, Sc, Ti, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Ce, Nd, and Yb. We investigate bulge membership of all seven stars using distances and orbital simulations, and we find that the most metal-poor star may be a halo interloper. Our investigation also shows that the inner bulge as close as 1° north of the Galactic Center displays a similarity to the inner disk sequence, following the high-[α/Fe] envelope of the solar vicinity metal-rich population, though no firm conclusions for a different enrichment history are evident from this sample. We find a small fraction of metal-poor stars ([Fe/H] > −0.5), but most of our stars are mainly of supersolar metallicity. Fluorine is found to be enhanced at high metallicity compared to the solar neighborhood, but confirmation with a larger sample is required. We will apply this approach to explore the populations of the nuclear stellar disk and the nuclear star cluster. 
    more » « less
  7. Abstract From >1000 orbits of HST imaging, we present deep homogeneous resolved star color–magnitude diagrams that reach the oldest main-sequence turnoff and uniformly measured star formation histories (SFHs) of 36 dwarf galaxies (−6 ≥MV≥ −17) associated with the M31 halo, and for 10 additional fields in M31, M33, and the Giant Stellar Stream. From our SFHs, we find: (i) The median stellar age and quenching epoch of M31 satellites correlate with galaxy luminosity and galactocentric distance. Satellite luminosity and present-day distance from M31 predict the satellite quenching epoch to within 1.8 Gyr at all epochs. This tight relationship highlights the fundamental connection between satellite halo mass, environmental history, and star formation duration. (ii) There is no difference between the median SFH of galaxies on and off the great plane of Andromeda satellites. (iii) ~50% of our M31 satellites show prominent ancient star formation (>12 Gyr ago) followed by delayed quenching (8–10 Gyr ago), which is not commonly observed among the MW satellites. (iv) A comparison with TNG50 and FIRE-2 simulated satellite dwarfs around M31-like hosts shows that some of these trends (dependence of SFH on satellite luminosity) are reproduced in the simulations while others (dependence of SFH on galactocentric distance, presence of the delayed-quenching population) are weaker or absent. We provide all photometric catalogs and SFHs as High-Level Science Products on MAST. 
    more » « less
    Free, publicly-accessible full text available January 28, 2026
  8. Abstract We present wide-field, high resolution maps of the color excess for 14 globular clusters toward the Southern Galactic bulge. The maps were derived using Gaia EDR3 astrometry and stellar photometry from the Blanco DECam Bulge Survey, which is a deep, wide-field ugriz Y photometric survey of the southern Galactic bulge. Comparisons with WISE 12 μ m images of thermal continuum emission demonstrate that the maps presented here trace interstellar extinction by dust down to 5″ scales. We use the reddening-corrected photometry of proper motion-selected cluster stars to build color–magnitude diagrams for the target globular clusters, which show residual broadening in excess of that expected from the photometric errors alone. This residual broadening is likely to be driven by star-to-star elemental abundance variations. 
    more » « less
  9. Abstract Patchick 99 is a candidate globular cluster located in the direction of the Galactic bulge, with a proper motion almost identical to the field and extreme field star contamination. A recent analysis suggests it is a low-luminosity globular cluster with a population of RR Lyrae stars. We present new spectra of stars in and around Patchick 99, targeting specifically the three RR Lyrae stars associated with the cluster as well as the other RR Lyrae stars in the field. A sample of 53 giant stars selected from proper motions and a position on the color–magnitude diagram are also observed. The three RR Lyrae stars associated with the cluster have similar radial velocities and distances, and two of the targeted giants also have radial velocities in this velocity regime and [Fe/H] metallicities that are slightly more metal-poor than the field. Therefore, if Patchick 99 is a bona fide globular cluster, it would have a radial velocity of −92 ± 10 km s−1, a distance of 6.7 ± 0.4 kpc (as determined from the RR Lyrae stars), and an orbit that confines it to the inner bulge. 
    more » « less
  10. Abstract We present photometric evidence for multiple stellar populations (MPs) in 14 globular clusters (GCs) toward the southern Galactic bulge. The photometric data come as part of the Blanco DECam Bulge Survey, which is a deep, wide-field near-UV-near-IR ( ugriz Y) survey of the southern Galactic bulge. Here, we present the first systematic study of bulge GC multiple populations with deep photometry including the u band, which is a crucial indicator of the abundance of CNO-bearing molecules in stellar atmospheres. We identify cluster members using Gaia EDR3 proper motion measurements, and then isolate red giant branch stars using r versus u − r color–magnitude diagrams. We find evidence suggesting all 14 clusters host at least two populations, and NGC 6441, NGC 6626, and NGC 6656 appear to have at least three populations. Many of these clusters are not part of the Hubble Space Telescope (HST) surveys nor do they have comprehensive spectroscopic analyses so we are presenting the first evidence of MPs in several clusters. Not only do we find a strong anticorrelation between the fraction of first-generation stars and cluster absolute V magnitude, but the correlation coefficient and cluster-to-cluster scatter are similar to the results obtained from HST. Our ground-based data extend to much larger radial distances than similar HST observations, enabling a reliable estimate of the global fraction of first-generation stars in each cluster. This study demonstrates that ground-based u -band photometry as provided by DECam will prove powerful in the study of multiple populations in resolved GCs. 
    more » « less